Evaluating a New Conversive Hidden non-Markovian Model Approach for Online Movement Trajectory Verification

Tim Dittmar, Claudia Krull, Graham Horton
Faculty of Computer Science, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
firstname.name@ovgu.de

Keywords: online signature verification, Conversive Hidden non-Markovian Model, DTW, HMM, movement trajectories

Abstract: This paper presents further research on an implemented classification and verification system that employs a novel approach for stochastically modelling movement trajectories. The models are based on Conversive Hidden non-Markovian Models that are especially suited to mimic temporal dynamics of time series as in contrast to the relative Hidden Markov Models (HMM) and the dynamic time warping (DTW) method, timestamp information of data are an integral part. The system is able to create trajectory models from examples and is tested on signatures, doodles and pseudo-signatures for its verification performance. By using publicly available databases comparisons are made to evaluate the potential of the system. The results reveal that the system already performs similar to a general DTW approach on doodles and pseudo-signatures but does not reach the performance of specialized HMM systems for signatures. But further possibilities to improve the results are discussed.

1 INTRODUCTION

In our daily life movements of the human body play an important role. They are part of our nature and they are required to interact in this world whether it be with objects, other humans and creatures or more recently also with computers. Hence, there are a lot of fields where the computational analysis of human movements is of interest, e.g. for Human-Computer-Interaction, sport science, forensic science, security, gaming etc. For a lot of applications mainly the shape of the path of a certain movement (trajectory) and its temporal dynamics are relevant, but due to spatial and temporal variations between e.g. repeated executions of a certain consciously performed movement, a classification or verification poses to be a difficult task.

In this article we present further research on a new approach to model movement trajectories that is based on a novel model class: Conversive Hidden non-Markovian Model (CHnMM). In previous work (see Section 2.1) the idea to use CHnMM was evaluated and a first system that automatically creates CHnMM based trajectory models from several training examples has been developed, implemented and tested for classification performance on touch gestures. However, the CHnMM trajectory models are also applicable for verification tasks and with the experiments described in this paper their potential and performance in this area is analysed.

A typical application for verification is the authentication of persons and a very common method that involves a movement trajectory is the verification of signatures. In order to be able to compare the verification performance of the CHnMM based system to other methods publicly available databases are employed that contain a sufficient amount of data from real users. Instead of only evaluating the performance on normal pen-drawn signatures, also finger-drawn doodles and pseudo-signatures are used, because the developed CHnMM system is not specifically created for signatures but for any spatio-temporal trajectory that only slightly varies in shape and temporal dynamics. As a result, we do not expect the CHnMM system to significantly outperform other specialised systems. The goal of this work is to prove that our developed approach is applicable for movement trajectory verification tasks using data of possible real world applications.

We believe that CHnMM are especially suitable to model temporal dynamics, hence, the discrimination of trajectories that resemble in shape but differ in temporal execution was a main goal of the developed system. This trait could turn out to be useful in deciding whether a signature is valid. A forgery attempt may have the same trajectory shape as the genuine one, but probably will exhibit different temporal dynamics.
2 RELATED WORK

2.1 Previous Work

In (Krull and Horton, 2009) an extension to the popular Hidden Markov Models (HMM) has been presented: the so-called Hidden non-Markovian models (HnMMs) that allow more realistic modelling of processes. The solution algorithms (Evaluation, Decoding and Training (Rabiner and Juang, 1986)) are computationally very demanding and consequently Buchholz defined and researched a subclass called Converse HnMM (CHnMM) that still provide detailed modelling possibilities while significantly improving the efficiency of the solution algorithms.

Since CHnMM and HMM are relatives, studies have been conducted by Bosse et al. (Bosse et al., 2011) and Dittmar et al. (Dittmar et al., 2013) to evaluate the general applicability of CHnMM to Wii Remote and touch gesture recognition respectively, which is often done by means of HMM classifiers. Both studies revealed that CHnMM can perform better than HMM especially if the shape of the gestures is not the discriminating factor but its temporal dynamics.

However, a problem of both approaches is the fact that the gesture models are required to be manually created by an expert who extracted a model structure and calculated model parameters from several example traces. This greatly reduces the practicability of the approach in real world applications and therefore an automatic model creation approach has been developed that covers general movement trajectories that spatially and temporally behave similar on each repetition. In (Dittmar et al., 2015) this approach is explained in detail and it has been implemented and tested on touch gesture recognition tasks with promising results.

2.2 Related Work

The discipline of online signature verification is well established and manifold methods and techniques have been applied. There are two main categories of systems: 'feature-based' and 'function-based' (Martinez-Diaz et al., 2014). The CHnMM system would belong to the 'function-based' system as it mainly operates on the time-discrete functions describing the pen movement trajectory, instead of calculating a number of global features. Two main representatives of this category are HMM and DTW based systems of which plenty exist.

Examples of HMM based systems include work by Fierrez et al. (Fierrez et al., 2007) where a lot of features are extracted from the signatures (from MCYT database) to learn continuous HMM from examples with each representing the signature. Similarly, Muramatsu et al. (Muramatsu and Matsumoto, 2003) learned discrete HMM only utilizing the quantized direction angle to model Chinese signatures. However, HMM tend to require more training examples than for example DTW (Fierrez et al., 2007) and the training process needs a significant amount of time to create the models. However, the computation of the verification score is comparably fast.

DTW methods, which represent a template matching approach, are very common and the system by Kholmatov et al. (Kholmatov and Yanikoglu, 2005) even won the First International Signature Verification Competition. Interestingly, without using further information like pressure, azimuth or elevation. Other examples are described by Faundez-Zanuy (Faundez-Zanuy, 2007) and Martinez-Garcia et al. (Martinez-Diaz et al., 2013) but the latter employed the DTW method on doodles and pseudo-signatures that were finger-drawn on a mobile touch device. The DTW method requires to save all training examples as templates and in order to verify an input a DTW distance score has to be determined for each available template.

Although the temporal dynamics are essential to verify a signature, neither HMM nor DTW utilize any time information in the calculations. They assume a regular time series like a fix frequency from a recording device. Both methods could unveil problems in cases where this frequency changes for example because of different recording devices. CHnMM explicitly need the timestamp of each observation but are not bound to regular signals.

3 THE CHNMM VERIFICATION SYSTEM

The following paragraphs summarise important aspects of the developed CHnMM based classification and verification system for spatio-temporal movement trajectories.

3.1 CHnMM - Formal Definition

Firstly, in order to understand the descriptions, the formal definition of a CHnMM is presented.

A CHnMM contains the following elements that are similar to the elements of HMM:

- a set of states S of size N
- a set of output symbols V of size M
- an initial probability vector $\Pi = (\pi_1, \ldots, \pi_N)$
• a $N \times N$ matrix A containing the state change behaviour, but with more complex elements a_{ij}.

Additionally, a CHnMM contains the set $TR = \{tr_1, tr_2, \ldots, tr_K\}$ of K transitions that define the model behaviour. Each transition tr_i is a tuple consisting of the following three elements:

- $dist$ represents the continuous probability distribution that specifies the duration of the transition which causes a discrete state change on completion.
- $b(v)$ is a function that returns the output probability of symbol v when the transition causes a state change. It is the semantic equivalent of the output probabilities in B for HMM, but associated to transitions for CHnMM instead of states as in HMM.
- $aging$ is a boolean value that determines if the time that the transition has been active for is saved ($aging = true$) or reset to 0 ($aging = false$) if there is a state change deactivating it caused by another transition, i.e. if the current active transition is interrupted by the triggering of another. This property will not be of further relevance in this article as the models will always default it to false.

All elements a_{ij} in A are either elements of TR or empty if no transition between states s_i and s_j exist. A CHnMM λ is fully defined as a tuple $\lambda = (S, V, A, TR, II)$ that contains all previously described elements.

3.2 Trajectory Model Structure

The basic idea of the developed trajectory model is to split the stochastic process into its spatial and temporal stochastics. The reason behind this is to facilitate the automatic CHnMM creation by utilizing the spatial information of the trajectories to define the CHnMM states S and output symbols V and their behaviour $tr.b(v)$. The temporal stochastics of the process are hold by the transitions of the CHnMM $tr.dist$.

For representing the spatial stochastics of the process, the so called StrokeMap, was introduced. It consists of circular areas that each trajectory path will reach successively. In Figure 1 the general model concept is visualized with two exemplary trajectories that represent the stochastic process. The examples are used to generate the StrokeMap first, which thereupon serves as the base for the layout of the CHnMM. Afterwards, the time distributions for each CHnMM transition are estimated from the examples. The details of how the StrokeMap and the CHnMM are created are explained in the following two sections.

3.3 Creating the StrokeMap

The StrokeMap is an ordered set of circular areas ($SM = \{Ar_1, \ldots, Ar_n\}$) that represent the locations that every trajectory has to pass through successively. They hold the spatial stochastics by defining probable locations of where the trajectory points will occur and each area consists of its position, its radius and its tolerance radius ($Ar = (x, y, r, tol)$). The areas are created from a set of example trajectories $I = \{tr_1, \ldots, tr_m\}$ where each trajectory is a chronologically ordered sequence of tuples that contains the position and timestamp of each recorded point ($tr_j = ((x_1, y_1, t_1), \ldots, (x_n, y_n, t_n))$).

In Algorithm 1 a formal definition of the generation process is given that describes how the StrokeMap areas Ar_1 to Ar_n are determined. Firstly, each trajectory in I is linearly interpolated to approximate the continuous trajectory path. Afterwards, a fixed number of spatially equidistant points is sampled from the interpolated trajectory, defined by the parameter $nAreas$ and the arc distance between the points Δtr_j is also dependent on the arc length of the trajectory.

$\forall tr_j \in I:\n$\quad $Int_{tr_j}(s) = Interpolation(tr_j)\n$\quad $\Delta tr_j = \frac{Length(Int_{tr_j})}{nAreas}\n$\quad $\forall i \in N, 1 \leq i \leq nAreas:\n$\quad $AP_i = \{ap_{tr, j} | Int_{tr}(\Delta tr_j * i)\}\n$\quad $D_i = \{\Delta | ap_{tr, j} - ap_{tr, j-1}\}\n$\quad $Ar_i = CreateArea(AP_i, minRadius)\n$\quad $Ar_i.tol = Ar_i.r * toleranceFactor\n
Algorithm 1: StrokeMap generation

The sampled points are grouped together in AP_i according to their area index. Each set AP_i of area points is used to create an individual area Ar_i of the StrokeMap. The CreateArea function determines the radius and the position of a minimal circular area that contains all the points of a set AP_i. To encounter areas that are too small due to a small number of examples, the parameter $minRadius$ is implemented that defines the minimal radius that is returned by CreateArea.

Furthermore, it is expected that unknown examples of the trajectory will not lie within the calculated areas and therefore, the parameter $toleranceFactor$ is
employed to determine a tolerance area radius by multiplying the factor with the original circle radius. The set D_i contains the times needed to travel the Δs_{trj} distance from area A_{i-1} to A_i and will be used in the CHnMM creation process.

3.4 Creating the CHnMM

As already stated the StrokeMap is the base the CHnMM, especially for its layout. In Algorithm 2 it is formally shown how all the elements of the CHnMM are determined and it can be clearly seen that the sets S, V, A of the CHnMM, which basically represent the layout, are already determined by knowing nAreas. A linear topology is employed to connect the states with transitions as it is known from HMM (Fink, 2014) and the graphical visualization of this layout is shown in Figure 1.

Subsequently, each transition tr_i is defined. For the output probabilities a parameter $hitProbability$ exists that specifies the probability that the Ai Hit symbol is generated by a trajectory, indicating that the according sampling point ap_i lies within the circular core area, while Ai Tol that the point lies within the tolerance area, which is penalized by applying a smaller probability. Ergo, $hitProbability$ is always greater than 0.5.

For the probability distribution of a transition tr_i that defines the temporal behaviour, the set D_i

$$S = \{ \text{Start}, A_1, \ldots, A_n \}$$

$$V = \{ A_1\text{Hit}, A_1\text{Tol}, \ldots, A_n\text{Hit}, A_n\text{Tol} \}, \ n = n\text{Areas}$$

$$A = T^{\text{Areas} \times n\text{Areas}}, a_{ij} = \begin{cases} tr_j & \text{if } j = i + 1 \\ 0 & \text{otherwise} \end{cases}$$

$$\forall i \in \mathbb{N}, 1 \leq i \leq n\text{Areas} :$$

$$tr_i.b(A_i\text{Hit}) = hitProbability$$

$$tr_i.b(A_i\text{Tol}) = 1 - hitProbability$$

$$tr_i.aging = false$$

$$tr_i.dist = \text{CreateDistribution}(D_i, \text{distType})$$

Algorithm 2: CHnMM generation

from the StrokeMap creation is applied to the CreateDistribution function that estimates a fitting distribution according to the given $distType$.

3.5 Trajectory Verification

After a trajectory model, consisting of the StrokeMap and the CHnMM, has been created it can be used to verify unknown trajectory examples. Therefore, the evaluation task, which is known from HMM systems, needs to be solved. Formally this means to calculate $P(O|\lambda)$ given a symbol trace $O = (o_1, \ldots, o_T)$ and a CHnMM λ. The symbol trace O is generated from the
unknown input trajectory by using the point sampling
method from Section 3.3. If a point lies within its
corresponding StrokeMap area either Ai.Hit or Ai.Tol
is emitted as an observation \(o_i \) at the interpolated time
of the sample point. If there is a single sample point
that does not lie within its area the result for \(P(O|\lambda) \)
is 0, otherwise the probability that the model \(\lambda \)
created the trace \(O \) is calculated according to the evaluation
algorithm presented in (Buchholz, 2012).

If the result is 0 the the input is assumed to be
invalid. In Section 4.3.3 the use of a threshold value
is discussed.

4 EXPERIMENTS

4.1 Databases

The following sections describe the employed ex-
ternal databases of real world trajectory data that
are mainly intended for biometric authentication pur-
poses. They are interesting to test on, because they
represent real world data created with different de-
vices by a sufficient number of users.

4.1.1 MCYT

The MCYT (Ministerio de Ciencia y Tecnolog ía) bi-
modal biometric database(Ortega-Garc ía et al., 2003)
consists of a fingerprint and online signature dataset
whose purpose is to represent a statistical significant
part of a large scale population. Thereby, it enables
the evaluation of the performance of automatic bio-
metric recognition systems and their comparison. For
this work, only the online signature dataset is of in-
terest, as it contains spatio-temporal trajectory data
to evaluate the developed CHnMM recognition ap-
proach.

The database version that is kindly provided by
Biometric Recognition Group - ATVS of the Uni-
versidad Autonoma de Madrid consists of signatures
of 100 participants. Each participant provided 25
genuine executions of his or her signature that were
created on a WACOM INTUOS A6 USB pen tablet
recording the following features with a 100Hz fre-
quency:

- x, y coordinates
- pressure applied by pen
- azimuth angle of the pen relative to the tablet
- altitude angle of the pen relative to the tablet

For the CHnMM recognition system to work, a syn-
thetic timestamp is additionally created that increases
by 10ms for each new feature vector. Be aware, that
the CHnMM recognition system only makes use of the
x, y coordinates and the timestamp, because it was
design for general movement trajectories and not device specific data.

Besides the 25 genuine signature examples, there are also 25 forgeries per user that are created by other
participants based on a static image of the genuine
user signature. Since the lifting of the pen from the
surface does not result in a lack of positional data,
these pen movements that are not part of the resulting
static signature image are still part of the online sig-
nature. In Figure 2 some examples of three different
users visualized to give an impression of the signature
data.

4.1.2 DooDB

The DooDB created by Mart ínez-D íaz et
al.(Mart ínez-D íaz et al., 2013), which is also
made publicly available by the ATVS group, consists
of two corpora: Doodles and Pseudo-signatures.
Both corpora were created by finger movements
on the touch surface of an HTC Touch HD mobile
phone with a 5x8.5cm screen. The recorded data
includes the x, y coordinates and a time interval
that describes the time that has passed since the last
recorded touchpoint which usually is around 10ms as
the device frequency is approximately 100Hz. This
time interval is significantly longer if there is a phase
where the finger does not touch the surface, because
no data can be recorded in that time. Erroneous data,
i.e. 0,0 coordinates, that is part of the recordings
is left out from the trajectory but the time interval
information of the erroneous measurement is still
considered for determining the timestamps.

Both corpora consist of examples from 100 users
and for each user there are 30 genuine examples and
20 forgeries in each corpora. The difference between
the corpora is what the participants have been draw-
ing. For the Doodles corpus they were asked to draw
a doodle that they would use as a graphical password
on a regular basis for authentication purposes while
they draw a simplified version of their signature in
the Pseudo-signatures corpus.

4.2 Experiment Protocol

For a better understanding of the experiment results,
this section describes the details and circumstances of
how they were obtained and what they consist of.

Performance Assessment The goal of this work is
to evaluate the new CHnMM trajectory verification
approach on real world authentication data. To assess the quality of an authentication system there are two main measures: the False Rejection Rate (FRR) of genuine trajectories and the False Acceptance Rate (FAR) of forgery trajectories which are commonly used (Kholmatov and Yanikoglu, 2009; Martinez-Diaz et al., 2013; Ortega-Garcia et al., 2003). Usually, authentication systems employ a certain threshold value that decides whether a certain input fits the template. Changing this threshold either favours a better FAR or a better FRR of the system or in other words both are inversely related. It is common to provide the so called Equal Error Rate (EER) where FAR equals FRR as a single quantity to specify the quality of an authentication system.

Input data The data used for the experiments originates from the databases explained in the previous section that yield three different corpora of interest: MCYT Signatures, Doodles and PseudoSignatures. All of these corpora share enough similarities so that it is possible to use the same experiment protocol on them. They all contain several genuine examples of a certain user trajectory, i.e. signature, doodle or pseudo signature, and also several forgeries of these user trajectories for each user. The coordinates of the data points of each trajectory are normalized to a real valued range from 0 to 1 according to the size of the available surface area.

To conduct the experiments the trajectory data from the corpora needs to be separated into a training, a genuine and a forgery test set. The training set is used to create the verification system while both test sets are used to determine the verification performance. In this work, two different approaches to create these sets have been used, inspired by the procedure in (Martinez-Diaz et al., 2013). Both approaches differ in the quality of the forgeries and are referred to as random and skilled. In both cases a specified number of genuine training examples is taken from each user and the remaining genuine examples of the user are used for the genuine test set. In the random approach the forgery test set consists of the first genuine example of each other user and the performance results will help to understand the robustness of the verification system against random input. For the skilled approach the forgery set consists of all available forgery examples for the user and the results will reveal the applicability of the verification system in real world situations.

Parameter variation The CHnMM authentication system that is described in this work has several parameters that influence the authentication behaviour. In order to determine acceptable parameter sets and to evaluate the influences of certain parameters, parameter variation has been utilized, hence, the system is tested with a lot of different parameter combinations. The tested parameter ranges are based on experience from previous work (Dittmar et al., 2015) and are as follows:

- **nAreas**: 10–20, step size 5,
The outcome of the previously explained experiments is visually summarized in Figure 3 with a FAR-FRR point diagram for every database corpus. The visual impression very much resembles a typical ROC curve especially if a Pareto frontier is imagined. The main difference is that there are also points behind the Pareto frontier which represent results of experiments where an unsuitable parameter set was employed. Hence, the general behaviour is as expected, because trying to reduce the FRR produces higher FAR and vice versa. Also as expected is the performance difference between random (circles) and skilled (crosses) forgeries as most experiment outcomes for the random approach are very close to a FAR of 0, especially compared to the skilled forgery approach.

Comparing the different data sets, the best performance was achieved with MCYT signatures where also the distance between random and skilled is rather small compared to doodles and pseudo-signatures. This is probably due to the fact that signatures written with a pen are performed more consistently, since they are a common and known movement for the user. For the same reason the pseudo-signature results are slightly better than for the doodles, but since the pseudo-signatures are performed with a finger on a touchscreen they are not as consistent as the signatures.

Another unsurprising observation is that increasing the number of training examples from five (yellow) to ten (blue) generally improves the performances on all databases. However, this also indicates that the developed system works as expected.

In Table 1 the achieved EER for each data set and forgery type are displayed. Be aware that in this work these EER values describe the best achievable balanced (FAR equals FRR) result by using a good parameter set. The values do not recommend to use the system in practice, especially due to the quite high percentages for the random forgeries that seemingly suggest that not even random input can be distinguished well, but the plots proof that the system has a very low FAR until the parameter sets become too tolerant. Hence, in order to better understand the values they have to be compared to other methods.

Table 1: Achieved EER for every database

<table>
<thead>
<tr>
<th></th>
<th>MCYT</th>
<th>Doodles</th>
<th>PseudoSignatures</th>
</tr>
</thead>
<tbody>
<tr>
<td>Random</td>
<td>4%</td>
<td>12%</td>
<td>8%</td>
</tr>
<tr>
<td>Skilled</td>
<td>11%</td>
<td>29%</td>
<td>21%</td>
</tr>
</tbody>
</table>

The work by Martinez-Diaz et al. (Martinez-Diaz et al., 2013) contains benchmark values for the Doodles and Pseudo-signatures corpora that are based on a DTW verification approach. Fortunately, they employed very basic DTW approaches that only use the x,y-coordinates or their first or second derivative. This allows for a fair comparison, because these features are not application specific but very generic as is our system that is not designed for specific trajectories. Their results are based on experiments with 5 training examples and with skilled forgeries they achieved EER between 26.7%–36.4% for doodles and between 19.8%–34.5% for Pseudo-signatures. For random forgeries the EER are between 2.7%–7.6% for doodles and between 1.6%–5.0% for Pseudo-signatures.

In the work by Ortega-Garcia et al. (Ortega-Garcia et al., 2003) an HMM verification approach was applied to subsets of the MCYT database where models were trained using 10 training examples. Depending on the chosen subset, EER between 1% and 3% were achieved for skilled forgeries. While this value could not be achieved with our system we still think that the performance is very promising, especially considering that it is not specialized on signature trajectories and that there is still room for im-
Figure 3: FAR-FRR plots for all authentication experiment results distinguished by forgery type and training size

4.3.2 Parameter influences

The influence and behaviour of the CHnMM system parameters still very much resembles the observations made in previous work (Dittmar et al., 2015) where the system was applied to touch gesture classification tasks. The parameters minRadius and toleranceFactor influence the system behaviour the most as increasing their values generally create more tolerant verification systems that is more accepting and thus leads to lower FRR and higher FAR. Interestingly, parameter nAreas does not have a big influence for certain parameter combinations especially those that lead to practically useless results with FAR greater than 50%, but a lower nAreas value can slightly improve the EER of the verification system for better parameter sets. This is due to the fact that a smaller number of areas in the model decreases the number of “hurdles” for a certain input and thereby the number of false rejections can be decreased while the chances of accepting an invalid input (FAR) only slightly increases.

In Figure 5 the results of the experiments for skilled forgeries are plotted again but slightly different in order to analyse the influence of the distribution type of the transitions that are either uniform or normal in this work. The plots visualize that the uniform distribution generally seems to improve the FAR compared to the normal distribution while sacrificing on FRR. This is expected behaviour as the uniform distribution only covers a strict time interval while a normal distribution theoretically covers an infinite one. Hence, if the input does not fit into the time interval at one point in the trajectory model the input is determined invalid. With the normal distribution such an early rule out by time cannot occur. The uniform distribution seems to perform better for the Pseudo-signatures which leads to think that the temporal behaviour is quite decisive in this data set. The same trend occurs in the Doodle database but an EER is never reached. For the MCYT signatures the normal distribution seems to be the better choice which probably is due to an unsuitable time tolerance for this data set.

4.3.3 Employing a threshold value

Currently, the implemented system does not employ the usual threshold concept as it is currently not decided how a threshold is determined best for our system. To proof that there is further potential to improve the already promising system an additional experiment was conducted on the MCYT signature database. This time with the data of all available 100 users, 10 training examples and only with a specific parameter set. The chosen set (nArea=10, toleranceFactor=1.7, minRadius=0.05, distribution-Type=normal) achieved the best balanced result...
(FAR=10%, FRR=12%) for skilled forgeries in the previous experiments. In this additional experiment the evaluation values of each verification have been recorded.

The resulting FAR and FRR values essentially did not change and in Figure 4 the histogram shows how often certain evaluation values occurred in relation to the number of made verifications whose evaluation value were not 0. Be aware that the logarithm was taken of the evaluation values in order to make the very little values more comprehensible and easier to visualise.

![Histogram of evaluation values](image)

Figure 4: Evaluation value distribution for a chosen parameter set with MCYT Signatures (logarithmised values)

As expected, the plot reveals that the evaluation values of genuine inputs tend to be greater than those of skilled and random forgeries with close to 95% of them being between -40 and -10. While there is no perfect threshold value that separates the forgeries from the genuines, it is possible to achieve improvements especially for the FAR. For example, setting the threshold to -40 would keep the FRR at 12% (there is only a slight deterioration from 11.9% to 12.2%) while significantly improving the FAR to 6.5%. Choosing a higher threshold like -30 would further improve the FAR to 3% at the expense of the FRR that would increase to 16.7%.

These findings suggest that the implementation of a threshold value could further improve the results from the previous experiments. We assume that the plotted results would see a shift to the left, because the FAR seems to improve with a comparably smaller deterioration of the FRR.

5 CONCLUSIONS

In this paper a CHnMM approach for trajectory verification has been presented and tested on three different data sets: signatures, doodles and pseudosignatures. The results were shown to be in competitive ranges compared to HMM and DTW methods that others already applied to these data sets, proving the applicability of the developed CHnMM for trajectory verification tasks. The EER values for random forgeries were not as competitive, but the discussed implementation of a threshold value should provide significant improvements in this regard.

Furthermore, it was shown that due to the several parameters it is possible to adjust the system behaviour to the needs of the application. Using a uniform distribution for example significantly impacts the FAR values and for next iterations of the system a new tolerance factor for the time distributions could be introduced. As a result, the system could be tuned in to either preferring accurate timing and/or accurate trajectory shapes.

In the future, the developed CHnMM creation method for trajectories might be generalized to work on any time series like DTW and HMM, but with a focus on temporal dynamics and fast computations while also being independent of regular time series.

ACKNOWLEDGEMENTS

We would like to thank the Biometric Recognition Group - ATVS for providing us access to their databases.
REFERENCES

